Microstructure evolution and mechanical properties of wire arc additively manufactured Mg-Gd-Y-Zr alloy by post heat treatments

نویسندگان

چکیده

A detailed and systematic investigation on the effect post heat treatment has microstructure evolution resultant mechanical properties of wire arc additive manufacturing processed Mg-5.9Gd-2.8Y-0.7Zr alloy is conducted in this work. The as-built sample composed mainly fine equiaxed α-Mg grain Mg24(Gd, Y)5 phase. solution (400°C × 1 h) relatively little size, but it can effectively reduce content phase, which leads to a significantly improved elongation with slightly decreased strength. Further ageing at 200°C induces prismatic βʹ precipitates formation does not influence other phases size. samples directly following peak process demonstrate best tensile yield strength 227 ± 9 MPa, ultimate 350 4 MPa 5.5 0.6%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy

High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucle...

متن کامل

Superplasticity of a nano-grained Mg–Gd–Y–Zr alloy processed by high-pressure torsion

While most of the reports on Mg-Gd-Y-Zr alloys report superplasticity after extrusion or friction stir processing, it is important to investigate superplasticity in these alloys after other severe plastic deformation processes having greater grain refinement capability. Accordingly, superplasticity was studied in an Mg–9Gd–4Y–0.4Zr (GW94) alloy after different high-pressure torsion (HPT) condit...

متن کامل

Mechanical Properties of Additively Manufactured Thick Honeycombs

Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In ...

متن کامل

Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance

Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy pr...

متن کامل

Effect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy

The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Virtual and Physical Prototyping

سال: 2023

ISSN: ['1745-2759', '1745-2767']

DOI: https://doi.org/10.1080/17452759.2023.2225492